
IEEE Network • July/August 2019120 0890-8044/19/$25.00 © 2019 IEEE

Abstract
Artificial intelligence (AI) technology makes 

mobile devices become intelligent objects that 
can learn and act automatically. Although AI will 
bring great opportunities for mobile applications, 
little work has focused on the architecture and the 
interaction with the cloud. In this article, we present 
three existing architectures of mobile intelligence in 
detail and introduce its broad application prospects. 
Furthermore, we conduct a series of experiments 
to evaluate the performance of the prevalent com-
mercial applications and intelligent frameworks. Our 
results show that there is a big gap between Quality 
of Experience (QoE) requirements and the status 
quo. So far, we have seen only the tip of the ice-
berg. We pose issues and challenges to advance the 
area of mobile intelligence and hope to pave the 
way for future advancements.

Introduction
AI has recently attracted significant attention 
from both industry and academia, as it gives the 
machine the ability to perceive its environment and 
take actions. Specifically, it can extract high-level 
features from image, audio, or other signals auto-
matically, leading to a wide range of applications 
including computer vision, speech and natural 
language processing. In the meantime, mobile 
devices have become both ubiquitous and increas-
ingly powerful. A large volume of multimedia data 
is being produced and released into mobile cellular 
networks [1]. Therefore, there is an increasing inter-
est in applying AI to mobile environments. Among 
existing mobile intelligent applications, Machine 
Learning (ML) is the most commonly-used technol-
ogy. Thus, in this article we focus on the intelligent 
applications based on ML.

Previous works on mobile intelligence have 
only focused on the hardware platforms or the 
software models. Specifically, some teams are opti-
mizing mobile hardware chips to support the oper-
ation of the ML model, and others try their best to 
build lightweight models without loss of learning 
performance. However, there is scant research on 
the architecture choice of mobile intelligent appli-
cations. It is important to understand the existing 
architectures and optimize it from a more global 
perspective. To fill this gap, in this article we pres-
ent the first study on the architecture, experimenta-
tion and challenges of mobile intelligence.

First, we divide existing intelligent applica-
tions into three different architectures, namely 
cloud-based, local-based and partial offloading. 
We provide a technical overview including the 

introduction of the system architecture, major 
components and detailed functionalities. This 
architecture is applicable to all the mainstream 
ML models. Some researchers have developed 
intelligent applications using local-based [2, 3] 
and others have adopted cloud-based [4, 5]. 
There is also research work concerning combined 
models, such as making dynamic decisions on 
local-based or cloud-based [6]. Moreover, some 
researchers are exploring a new architecture: par-
tial offloading [7, 8]. On this basis, we propose 
three important QoE metrics to evaluate the per-
formance of these mobile intelligent applications.

Around these metrics, we conduct measure-
ments on prevalent commercial applications and 
intelligent frameworks. In the process of measur-
ing Google Translate, we have selected two func-
tions, namely Word Lens and Speech-to-speech 
translation, which represent the local-based and 
cloud-based architectures, respectively. In the 
process of measuring TensorFlow’s application 
programming interfaces (APIs), we have devel-
oped two applications, namely TF-local-based 
and TF-cloud-based, which represent the local-
based and cloud-based architectures, respective-
ly. Using both black-box testing and white-box 
testing, we get important metrics such as laten-
cy, CPU/RAM utilization and discharge rate. For 
the data obtained, we sort them out and find the 
mean and standard deviation. We conclude all 
experiment results and give some analysis. We 
find that there is indeed a big gap between QoE 
requirements and the status quo. Furthermore, we 
conduct a measurement study on partial offload-
ing architecture using the Inception-v3 model [9]. 
We find that the best partition point for latency 
is closely related to network bandwidth rate and 
the computational capability of the mobile device.

Since there are many difficulties and challeng-
es on the way to mobile intelligence, we propose 
the key challenges that are most likely to appear 
and give some insights for future improvement. 
Specifically, we consider unstable network con-
ditions, considerable energy consumption, priva-
cy disclosure, increasing model complexity and 
coarse-grained partition of the inference process. 
To the best of our knowledge, this is the first 
article that provides a wide overview and experi-
mental evaluation for the existing architectures of 
mobile intelligent applications.

Architecture
ML models are particularly well suited for per-
forming perceptual tasks, which can sense, learn 
from and respond to their environment. Depend-
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ing on the location of these trained models, we 
divide the existing applications into three different 
architectures, namely cloud-based, local-based 
and partial offloading, which are illustrated in Fig. 
1. Two major components can be identified in 
this figure: the mobile client and the cloud server. 
We first introduce the detailed functionalities of 
these two components.

Mobile Client: The mobile client receives 
input signals and preprocesses them locally. Then 
the mobile sends them either to the cloud’s ML 
model, or to the local model. After processing, 
the mobile client obtains the prediction results 
and presents the information to the user.

Cloud Server: The cloud server has abundant 
computing resources such as CPU, GPU and 
TPU, by which the cloud server can complete the 
training of the ML model. In order to train it, we 
need to provide the cloud server with the training 
data and configuration files of the related models. 
The cloud can also continue to carry well-trained 
models and provide web APIs to help inference 
processing.

As shown in Fig. 1, Phones A, B and C rep-
resent three typical architectures respectively. 
Here we briefly describe their workflow and their 
advantages and disadvantages.

Phone A is the cloud-based phone, which 
means the mobile client and cloud server work 
together to make predictions including a training 
process and an inference process. When training 
is done on the server, the cloud server obtains the 
learned parameters for the model. Then we can 
put the trained model on the server and publish 
web APIs that mobile devices can use. Since the 
model is on the server, it is easy to port the appli-
cation to different platforms. However, inference 
depends on the network and cannot be done 
locally on the device.

Phone B is the local-based phone, which 
means only the mobile makes predictions. We put 
the trained model into mobile devices and infer-

ence locally. We do not need to ask the server 
over the network during the inference process. 
It can be faster and more reliable. However, it 
requires large amounts of CPU and RAM resourc-
es on the mobile.

Phone C represents the partial offloading archi-
tecture, which is a more flexible and dynamic 
one. The model is composed of many abstract 
layers. On one hand, the mobile client partitions 
the model according to the current circumstanc-
es, including network condition, mobile capability 
and server load. On the other hand, it executes 
the model up to a specific layer and transfers the 
intermediate data to the cloud through the net-
work. Then the cloud server executes the remain-
ing layers and sends the prediction results back 
to the mobile client. This architecture would be 
more appealing when mobile applications are 
becoming more and more intelligent.

The architecture above is universal to which 
the mainstream ML models are all applicable, 
such as Deep Neural Network (DNN), Reinforce-
ment Learning (RL) models and Generative Adver-
sarial Network (GAN). The only thing we need to 
do is to make the corresponding replacement for 
the specific model.

Based on these three architectures, we have 
seen diverse mobile intelligent assistants such as 
Google Home, Apple Siri and Microsoft Cortana. 
All of them use accurate and complex ML tech-
nologies to process voice signals. In order to bet-
ter depict the user experience of these mobile 
intelligent applications, we introduce three QoE 
metrics.

Latency: Latency refers to the time that elapses 
between the user’s request and the prediction 
results, including pre-processing, model operation 
and post-processing. For some real-time interac-
tive intelligent applications, such as mobile Vir-
tual Reality (VR), they require 14ms latency and 
60FPS (the phone display refresh rate) [10]. For 
cloud gaming providers, interaction latency must 

FIGURE 1. Mobile intelligence architecture: cloud-based, local-based, and partial offloading.
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be kept as short as possible in order to provide a 
rich experience to cloud gaming players [11].

Accuracy: Accuracy refers to the ratio of the 
number of samples that get the correct results to 
the total number of samples, which can be used 
to measure the performance of the model. For 
some applications requiring a high level of secu-
rity, such as autonomous driving and road naviga-
tion, they require ultrahigh accuracy. Inaccuracy 
of any prediction result will be life-threatening. 
Some researchers have proposed that a well-
trained DNN can predict the steering angle with 
an accuracy close to that of a human driver [12].

Energy: Mobile devices are energy-con-
strained. However, running these complex models 
can introduce considerable computing and com-
munication overhead. Although mobile intelligent 
applications are very attractive to users, they will 
most likely choose not to use them if the energy 
consumption is huge. Therefore, energy effi  ciency 
is a desired goal in these mobile intelligent appli-
cations. 

eXperIMentAtIon
There have been many daily-used commercial 
mobile intelligent applications, such as Goo-
gle Translate [13]. In addition, many effective 
open-source libraries and frameworks have also 
appeared, such as Tensorflow, which provides 
convenience for developing intelligent applica-
tions on mobile devices. We conduct a measure-
ment study to quantitatively describe their QoE 
level. Specifi cally, we measure from two perspec-
tives: commercial mobile intelligent applications 
and mobile intelligent frameworks. We also mea-
sure the QoE on the partial offloading architec-
ture based on the Inception-v3 model [9]. We 
run the applications on a Nexus 6P smartphone. 
The data is sent to the cloud over the wireless 
network.

MeAsureMent on
coMMercIAl MobIle IntellIgent ApplIcAtIons

We first measure Google Translate, one of the 
most commonly used mobile applications. When 
using its speech-to-speech translation function, 
we need to connect to the Internet. Hence, it 
belongs to the cloud-based architecture. Howev-
er, Google Translate’s augmented reality feature, 
Word Lens, is done through offline language 

packs. Consequently, it belongs to the local-
based architecture. Since the source code for 
the app is not public, we conduct a black box 
test by recording video. Specifi cally, we collect 
100 images and 100 sentences in English, which 
are transmitted to the mobile application (Goo-
gle Translate) in the form of image and voice, 
respectively. In the process of translating these 
sentences from English into Chinese, we record 
it into videos. Then we analyze the video frame 
by frame and calculate the latency of processing 
each image or voice. As for the CPU and RAM 
utilization, we use Emmagee software, which is 
a simple and easy-to-use Android performance 
monitoring tool. Users can confi gure monitoring 
frequency and get performance statistics even-
tually. In addition, we leverage the Google Bat-
tery Historian tool to inspect the discharge rate 
of the Android device over time. For the data 
obtained, we sort them out and find the mean 
and standard deviation, as shown in the Fig. 2.

From the measurement results, we observe 
that the Word Lens function achieves lower laten-
cy, higher utilization rate of CPU/RAM and higher 
discharge rate. Since it computes locally based 
on offline language packs, it is faster but more 
resource-consuming. In contrast, the speech-to-
speech function has larger latency, lower utiliza-
tion rate of CPU/RAM and lower discharge rate. 
Since it sends voice to the cloud for processing, 
the network round-trip latency is larger while 
the local CPU/RAM resource utilization and dis-
charge rate of the mobile device is lower. After 
more in-depth analysis, we fi nd that the latencies 
of the two functions are in the hundred-millisec-
ond level, which is relatively large. In the mea-
surement of Word Lens, we fi nd if we move the 
smartphone in real time, it cannot process imme-
diately to give the right results and it seems to be 
stalling. In addition, this function only provides 
accurate translation for short and simple sentenc-
es. Once complex texts appear, the accuracy rate 
is greatly reduced. Worse still, some words are 
translated while others are not, which seriously 
affects the user experience. What’s more, CPU 
utilization of this function has reached 32.37 
percent and discharge rate has reached 39.94 
percent per hour, leading to high workload and 
energy consumption of the smartphone. In the 
measurement of speech-to-speech, we find that 
although the CPU/RAM resource utilization 
and discharge rate is lower, the latency is larger. 
When we gradually weaken the wireless network, 
the latency can reach even a few seconds, which 
is unbearable. 

MeAsureMent on MobIle IntellIgent frAMeWorKs
TensorFlow is one of the most prevalent frame-
works in the deep learning ecosystem. It pro-
vides an inference interface that can be called 
to complete the entire neural network pro-
cessing including input, running and output. In 
order to measure its performance, we develop 
two applications that can classify camera imag-
es based on the two kinds of architectures. We 
call them TF-local-based and TF-cloud-based, 
respectively. TF-local-based can classify images 
and display the top results in an overlay on the 
camera image. It runs the neural network totally 
on the mobile device. In contrast, TF-cloud-based 

FIGURE 2. Latency, CPU/RAM utilization and discharge rate of Word Lens and 
speech-to-speech translation.
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is a client-server architecture. We first need to 
start a Flask web server preparing to receive the 
mobile’s request. When the mobile device cap-
tures an image, the application will send it to the 
server through the network. The server receives 
the image and runs the neural network model to 
get the fi nal results. The top classifi cation results 
will be sent back to the mobile edge through 
the network and presented to the user. We use 
the Inception-v3 model trained on the ImageNet 
Large Visual Recognition Challenge dataset for 
both applications. The model can differentiate 
between 1,000 diff erent classes. During the mea-
surement, we collect 100 images from the test 
set and transmit them to these two applications, 
respectively. Since we have source code for both 
applications, we measure the latency by insert-
ing timestamps into the code. Latency refers to 
the time that elapses between the image request 
and the prediction result. For the CPU and RAM 
utilization measurement, we still use Emmagee 
software. For the battery energy measurement, 
we still use Google Battery Historian. We also 
compare latency, CPU/RAM utilization and dis-
charge rate between them, which are illustrated 
in Fig. 3.

From the experimental results, we can fi nd that 
the latencies of both applications are more than 
3000ms, under which condition real-time object 
classification is not applicable. More seriously, 
TF-local-based’s CPU and RAM utilization reach 
49.96 percent and 10.46 percent, respectively, 
which seriously affects the normal operation of 
the smartphone. What’s more, its discharge rate is 
about 35.39 percent per hour, which means this 
application can only last for 2.83 hours.

Combining all the measurement results, we can 
fi nd that existing cloud-based and local-based solu-
tions do not meet the needs of users. Although ML 
brings intelligence to mobile applications, there 
still exist hundreds of milliseconds or even seconds 
in terms of latency. CPU and RAM utilization is 
excessively high and the corresponding energy 
consumption is increasing. In addition, accuracy 
of the processing results is far from satisfactory. 
Hence, there is indeed a big gap between QoE 
requirements and the status quo.

MeAsureMent on pArtIAl offloAdIng ArchItecture
Since both cloud-based and local-based archi-
tectures fail to meet the requirements, we make 
some measurements on a new architecture: par-
tial off loading. We develop an application based 
on Tensorfl ow which can classify the images cap-
tured by the phone camera. We partition the 
Inception-v3 model at the layer granularity. Spe-
cifically, we set each layer as a partition point. 
For the given partition point, the mobile-end 
executes the computation up to it and transfers 
intermediate data to the cloud. Next, the cloud 
executes the remaining layers and transfers the 
prediction results back to the mobile-end. For 
each partition method, we send 100 test imag-
es to the application and compute the average 
latency. We make experiments under different 
network bandwidths (0.2, 1 and 5MB/s) and dif-
ferent mobile phones (Pixel and Nexus 6P) which 
represent various computation capabilities. Since 
we have source code for both applications, we 
break down the end-to-end processing latency, 

including mobile processing, network commu-
nication and server processing. The results are 
shown in Fig. 4. Each bar represents the end-to-
end latency for a specifi c partition method. The 
leftmost bar represents the cloud-based architec-
ture while the rightmost bar belongs to the local-
based architecture.

From the results, we can fi nd that every layer 
has a totally diff erent computational capacity. The 
best partition point for latency is diff erent under 
diff erent circumstances, which is closely related to 
the network bandwidth rate and the computation-
al capability of the mobile device. We can also 
find that these existing best results are still high 
and far from meeting the users’ need for latency.

chAllenges
Since there is a huge gap between QoE require-
ments and the status quo, we should make every 
effort to bridge it. However, during this process 
we may face many challenges, as we highlight in 
this section.

Network Condition is Unstable, Unsatisfied 
and Unpredictable: Network condition is con-
stantly changing and it is diffi  cult to select a fi xed 
formula to characterize it. In addition, for some 
mobile VR applications, the existing network sit-
uation is far away from the QoE requirements. 
Therefore, it is a challenge to dynamically assign 
tasks between the mobile and the cloud accord-
ing to diverse network conditions. A relatively 
simple method is that we use some regression 
models to predict the current wireless network 
conditions based on some real-time probe data.

Either Local Computing or Communicating 
with the Cloud will Consume Considerable Ener-
gy: The successful operation of the mobile assis-
tant requires a signifi cant amount of computation 
and communication overhead. To solve this prob-
lem, we need to propose a more effi  cient mobile 
energy-saving mechanism. A viable solution is to 
develop an energy model tool to record data fl ow 
and energy fl ow. It tells us how much energy the 
model consumes and where the bottleneck exists. 
Then we can use this information to design new 
energy-effi  cient models or to optimize the existing 
models.

Cooperation with the Cloud will Inevitably 
Produce the Issue of Privacy Disclosure: The 
data collected by the mobile devices can be very 

FIGURE 3. Latency, CPU/RAM utilization and discharge rate of TF-local-based 
and TF-cloud-based.
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sensitive and private. Uploading this information 
onto the cloud without any preprocessing consti-
tutes a great danger to an individual’s privacy. In 
the future, users may have the choice to use a dif-
ferent method to process these data (local-based, 
cloud-based or partial offloading), depending on 
which option best suits the situation.

Model Complexity and Data Size are 
Increasing: Take the example of deep learning. 
The models are becoming more and more com-
plex, with the number of parameters and layers 
is increasing significantly. Although this change 
improves the performance of models, it also pres-
ents new challenges in adapting resource-con-
strained mobile to these advanced models. To 
deal with this challenge, some teams provide 
hardware solutions. For example, Huawei’s new 
flagship Kirin 970 is Huawei’s first mobile AI 
computing platform featuring a dedicated neural 
processing unit (NPU). This chip can perform 
the same AI computing tasks faster and with less 
power. In the meantime, some teams are work-
ing on extending software frameworks for the 

mobile. For example, Google has announced 
Tensorflow Lite, which is a lightweight solution 
for mobile and embedded devices. It can also 
support hardware acceleration with the Android 
Neural Networks API.

Current Partition of the Inference Process 
is Still Coarse-Grained: Actually, many mod-
els can be split into different kinds of modules 
which are respectively responsible for different 
functions. In addition, distribution of latency 
varies a lot and is closely related to the corre-
sponding workload. For example, DeepMon 
[14] indicates that the convolutional layers 
dominate the execution cycles in the VGG-
VeryDeep-16 and YOLO model. DeepEye [15] 
demonstrates that the loading of fully-con-
nected layers is the most time-consuming task 
across eight different models. Neurosurgeon [7] 
indicates that for AlexNet, VGG and DeepFace, 
convolution layers are the most time-consum-
ing; for MNIST, fully-connected layers are the 
most time-consuming; for Kaldi and SENNA, 
layers of the model incur similar latency. Faced 

FIGURE4. End-to-end latency when choosing different partition points with different mobile devices and network conditions: a) Pixel, 
bandwidth = 0.2MB/s; b) Nexus 6P, bandwidth = 0.2MB/s; c) Pixel, bandwidth = 1MB/s; d) Nexus 6P, bandwidth = 1MB/s;  
e) Pixel, bandwidth = 5MB/s; f) Nexus 6P, bandwidth = 5MB/s.

(a) (b)

(c) (d)

(e) (f )
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with this situation, we should propose a deep 
integration architecture between mobile and 
cloud, which splits the functional modules intel-
ligently according to different workloads, mod-
els, network conditions and server loads.

Conclusion
Since there will be more and more applications 
implemented with ML technology on the mobile, 
understanding the existing architectures of the 
mobile intelligent applications is significant for 
both industry and academia. In this article, we 
present a thorough overview of the mobile intel-
ligence by introducing its architectures, com-
ponents and functionalities, followed by an 
experimental study that evaluates the prevalent 
commercial applications and intelligent frame-
works. All tested services suffer performance lim-
itations. Our results show that there is a big gap 
between QoE requirements and the status quo. 
Finally, we conclude experiment results and pro-
pose challenges. To the best of our knowledge, 
this is the first article that provides a wide over-
view and experimental evaluation for the existing 
architectures of the mobile intelligent applications. 
As for future work, we intend to do more detailed 
measurements, identify the bottleneck and pro-
pose advanced mobile intelligence architectures.
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